LeetCode 730: Count Different Palindromic Subsequences Solution
Master LeetCode problem 730 (Count Different Palindromic Subsequences), a hard challenge, with our optimized solutions in Java, C++, and Python. Explore detailed explanations, test your code in our interactive editor, and prepare for coding interviews.
730. Count Different Palindromic Subsequences
Problem Explanation
Explanation
To solve this problem, we can use dynamic programming with a 2D array to keep track of the number of palindromic subsequences that end at each character and have the same starting and ending characters. We can expand this to consider subsequences with different starting and ending characters by recursively counting the number of palindromic subsequences within the substring between the two characters.
- Initialize a 2D array
dp
of sizen x n x 4
, wheren
is the length of the input strings
and4
represents the characters 'a', 'b', 'c', and 'd'. - Iterate through the string
s
and update thedp
array to count the number of palindromic subsequences that end at each character. - For each character in the string, consider all possible characters to form a palindromic subsequence.
- Use recursive calls to count the number of palindromic subsequences within the substring between the two characters.
- Update the
dp
array with the counts. - Sum up all the counts in the
dp
array to get the total number of different non-empty palindromic subsequences.
Solution Code
class Solution {
public int countPalindromicSubsequences(String s) {
int mod = 1000000007;
int n = s.length();
int[][][] dp = new int[n][n][4];
for (int i = n - 1; i >= 0; i--) {
for (int j = i; j < n; j++) {
for (int k = 0; k < 4; k++) {
char c = (char) ('a' + k);
if (j == i) {
if (s.charAt(i) == c) dp[i][j][k] = 1;
else dp[i][j][k] = 0;
} else {
if (s.charAt(i) != c) dp[i][j][k] = dp[i + 1][j][k];
else if (s.charAt(j) != c) dp[i][j][k] = dp[i][j - 1][k];
else {
dp[i][j][k] = 2;
if (j > i + 1) {
for (int m = 0; m < 4; m++) {
dp[i][j][k] += dp[i + 1][j - 1][m];
dp[i][j][k] %= mod;
}
}
}
}
}
}
}
int ans = 0;
for (int k = 0; k < 4; k++) {
ans += dp[0][n - 1][k];
ans %= mod;
}
return ans;
}
}
Try It Yourself
Loading code editor...
Related LeetCode Problems
Frequently Asked Questions
How to solve LeetCode 730 (Count Different Palindromic Subsequences)?
This page provides optimized solutions for LeetCode problem 730 (Count Different Palindromic Subsequences) in Java, C++, and Python, along with a detailed explanation and an interactive code editor to test your code.
What is the time complexity of LeetCode 730 (Count Different Palindromic Subsequences)?
The time complexity for LeetCode 730 (Count Different Palindromic Subsequences) varies by solution. Check the detailed explanation section for specific complexities in Java, C++, and Python implementations.
Can I run code for LeetCode 730 on DevExCode?
Yes, DevExCode provides an interactive code editor where you can write, test, and run your code for LeetCode 730 in Java, C++, or Python.